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Error Correction Code: Motivation

• Error-correcting codes (ECC) are clever ways of representing data so that one can recover the original information 
even if parts of it are corrupted. 

• The basic idea is to judiciously add redundancy (encoding) so that the original information can be recovered 
(decoding) even when parts of the data have been corrupted (noise).

• E.g., assume we want to transmit one single bit 𝑏 and the probability of bit flip is 𝑝. 

• Using the 3-repetition code (sending [𝑏, 𝑏, 𝑏]), the probability of error is reduced to ~ 3𝑝2 (but transmission rate 1/3).

• ECC is present in all types of communication (transmission over space) and storage (transmission over time)



Error Correction Code: Setting

 Goal: allow reliable data transmission over a noisy communication channel.
 For a Binary Linear Block Code (𝒏, 𝒌)

• A desired binary message 𝒎~𝑩𝒆𝒓𝒏𝒌(𝟎. 𝟓) is encoded to a redundant codeword
 𝒙 ≡ 𝐆𝒎. Multiplication over GF(2), i.e., 𝒙 = 𝐦𝐨𝐝(𝐆𝒎,𝟐), 𝐆 ∈ 𝟎, 𝟏 𝒏×𝒌

 E.g., the natural structure of images allowing their denoising is here inserted artificially into the data to allow optimal decoding.

• The codeword 𝒙 is modulated (via BPSK) for transmission
 𝒙𝒔 = 𝟏− 𝟐𝒙.

• The channel adds (AWGN) noise 𝒛
 𝒚 = 𝒙𝒔 + 𝒛.

• The (parameterized) decoder 𝒇𝜽(𝒚) aims at retrieving the original codeword 𝒙 from 𝒚.

• For the 3-repetition code (3,1): 
1. 𝑚 = 1 ∈ 0,1

2. G = 1, 1, 1 𝑇

3. 𝑥 = 𝑥𝑠 = 𝐺𝑚 = 1,1,1

4. 𝑦 = 𝑥𝑠⨁𝑧 = 1,−1,−1

5. ො𝑥 = 𝑓 𝑦 =
σ𝑖 𝑦𝑖

3
= 1,1,1

• For the (7,4) Hamming code:



Error Correction Code: Setting

 How can I detect that an error occurred?

• Check if this is one of the 2𝑘 codewords

• The parity check matrix 𝑯 ∈ 𝟎, 𝟏 (𝒏−𝒌)×𝒏 kernel defines the codewords

 𝐆𝐓𝑯 ≡ 𝟎⇒ 𝑯𝒙 ≡ 𝟎.

• The parity check equations allow parity check errors discovery

 𝒔 = 𝑯 𝒙⊕ 𝒛𝒃 = 𝑯𝒙⊕𝑯𝒛𝒃 ≡ 𝑯𝒛𝒃 ∈ 𝟎, 𝟏 𝒏−𝒌 . 

 This binary vector of parity check errors is called the SYNDROME

• The Tanner graph is the (factor) graph representation of 𝑯 (edge for 1 in each column)



Error Correction Code: Background

• Given a code (i.e., 𝑯), the best possible decoder is defined by the NP-hard maximum likelihood 
decoder (search for the closest codeword among the 𝟐𝒌).

• Must have been done during the past 70 years in information theory for the design of provably 
(asymptotical) optimal codes and their efficient (≤ polynomial time) decoding.

• Shannon's channel coding theorem (1948) shows that, given a noisy channel with capacity 𝑪, if the 
information is transmitted at rate 𝑹 = 𝒌/𝒏 such that 𝑹 < 𝑪, then there exists a coding scheme that 
guarantees negligible probability of miscommunication.

• Recently, neural networks-based decoders (aka neural decoders) have shown promising results in this 
field.



Neural Decoders

 Two main families of neural decoders:

• Model-based decoders implement augmented parameterized versions of the classical Belief Propagation decoder 
built upon the Tanner graph (graph representation of 𝑯).

• Pros: 
• Invariant to the codeword (robust to codewords overfitting)

• Built on iterative (message-passing) legacy methods

• Cons:
• Suffers from heavy and restrictive inductive bias.

• Improvement vanishes as the code length and the number of iterations increase

• Model-free decoders employ general types of neural network architectures (e.g., MLP, RNN)

• Pros:
• Total freedom in model design

• Cons:
1. Overfitting (exponential number of codewords for training)

2. Difficulties for the model to learn the code.

3. Lack Iterative formulation

• Cons in Common :
4. Lack Code invariance (one decoder for each code)

5. Not adapted to modern ECC settings (e.g., quantum computing)

6. Cannot design/learn the code

NN𝒚 ෝ𝒙





Model-BASED Decoders



Belief Propagation (BP)
• A factor graph is a (bipartite) representation of a discrete probability distribution that takes advantage of conditional 

independencies between variables to make the representation more compact
• The Hammersley-Clifford theorem tells us that any positive joint distribution can be represented as a product of factors 

𝑝 𝑥1, … , 𝑥𝑛 =
Π𝑖=1
𝑛−𝑘𝜙𝑖 𝑋𝑆𝑖

𝑍

• Belief-Propagation (Sum-product algorithm) allows efficient marginal inference 𝑝 𝑥𝑖 via variable elimination as 
message-passing over the factor graph.

𝜈𝑥𝑖→𝜙𝑘 (𝑥𝑖) = ς𝜙𝑘∈ 𝑁 𝑖 ∖{𝜙𝑘}
𝜇𝜙𝑘→𝑋𝑖(𝑥𝑖) and    𝜇𝜙𝑘→𝑋𝑖(𝑥𝑖) = σ𝑋𝑆𝑘∖{𝑖}

𝜙𝑠(𝑋𝑆𝑘)ς𝑗∈𝑆𝑘∖{𝑖}
𝜈𝑋𝑗→𝜙𝑘(𝑥𝑗)

• For non-tree Bayesian graphs, the inference is not tractable. Thus, (loopy) belief-propagation is performed iteratively
(until convergence of the beliefs to a local minimum)

• Derivation:

• Write the posterior factor graph 𝑝 𝑋 = Π𝑖𝜙𝑖(𝑋𝑆𝑖)/𝑍 and the tree graph distribution 𝑞 𝑋 = Π𝑖𝑏𝑖 𝑥𝑖
1−𝑑𝑖Π𝑗𝑏𝑆𝑗 𝑋𝑆𝑗

• Minimize with respect to the (constrained) beliefs 𝑏𝑖 , 𝑏𝑆𝑗: 𝐾𝐿(𝑞| 𝑝 = 𝐻𝑞 𝑋 − σ𝑖 𝔼𝑞log(𝜙𝑖(𝑋𝑠𝑖)

𝑏𝑖 𝑥𝑖 = 𝑃(𝑥𝑖) ∝ 𝜙𝑖(𝑥𝑖) ς𝜙𝑘∈ 𝑁 𝑖 𝜇𝜙𝑘→𝑋𝑖
𝑻 (𝑥𝑖)

𝑝 𝑥1, 𝑥2, 𝑥3 ∝ 𝜙1(𝑥1)𝜙2(𝑥2) 𝜙3(𝑥1, 𝑥2) 𝜙4(𝑥2, 𝑥3)



Belief Propagation Decoding

• Early (Gallager) application of BP to ECC with a Posteriori distribution
• 𝑃 𝑥 𝑦 ∼ 𝑃 𝑦 𝑥 𝑃 𝑥 = Π𝑖𝑓(𝑦𝑖|𝑥𝑖)𝑃(ڂ𝑘 ⊕𝑘∈𝑁 𝑗 𝑥𝑘 = 0)

• 𝑃(ڂ𝑘 ⊕𝑘∈𝑁 𝑗 𝑥𝑘 = 0) = Π𝑘𝑃(⊕𝑘∈𝑁 𝑗 𝑥𝑘 = 0)

• 𝜙 𝑋𝑆𝑘 = 𝑃(⊕𝑘∈𝑁 𝑗 𝑥𝑘 = 0) =
1

2
(1 + Π𝑘∈𝑁 𝑗 \𝑖2(𝜈𝑥𝑘→𝐶𝑗

𝑻 𝑎) )

• Since the variables are independent

• Belief-propagation decoding is generally represented as a Trellis graph unrolling of the factor/Tanner graph (log-likelihoods).



How can we augment BP decoders?



Learning to Decode Linear Codes Using 
Deep Learning, Nachmani et al. Allerton 2016



Learning to Decode Linear Codes Using Deep Learning, 
Nachmani et al.

• RNN == Shared parameters

• Multi loss                                                                              for better gradient update (vanishing).

• Ensemble can also be applied



Hyper-graph-network decoders for block
codes, Nachmani and Wolf. Neurips19

• Replace arcthan with first order approximation for stable training

• The decoder maintains symmetry condition for zero codeword training (no overfitting)



Hyper-graph-network decoders for block
codes, Nachmani and Wolf. Neurips19



Model-FREE Decoders



How can we remain robust to overfitting?



Solving Model Free Overfitting

• We want 𝒉(⋅) such that  𝑷 𝒉(𝒚) 𝒙) = 𝑷(𝒉 𝒚 )

• Multiplicative noise

• The multiplicative noise 𝒛 is an equivalent statistical model to the true physical additive one 𝒛
𝒚 = 𝒙𝒔 + 𝒛 = 𝒙𝒔 ⊙ 𝒛 ⇒ 𝒛 = 𝒚⊙ 𝒙𝒔

• Preprocessing for invariance

• We can remain invariant to the transmitted codeword by processing other measures of 𝒚
• The Magnitude: 𝒚

 𝑷 𝒚 𝒙) = 𝑷 𝒙𝒔 𝒛 𝒙 = 𝑷 𝒙𝒔 𝒛 𝒙 = 𝑷( 𝒙𝒔|| 𝒛 |𝒙) = 𝑷( 𝒛 |𝒙) = 𝑷( 𝒛 )

• The Syndrome: 𝒔 𝒚 = 𝑯𝐛𝐢𝐧 𝐬𝐢𝐠𝐧 𝒚

 𝑷 𝒔(𝒚) 𝒙) = 𝑷 𝑯𝒙 + 𝑯 𝒛 𝒙) = 𝑷(𝑯 𝒛)

 Extends classical syndrome decoding

• Result

• Even with loss of information
 Does not involve any intrinsic performance penalty (in terms of BER and MSE)

 Guarantees the generalization of performance obtained during training.

 The prediction ෝ𝒙 = 𝒇𝜽(𝒚) is now defined by 𝒇𝜽: ℝ+
𝒏 × 𝟎, 𝟏 𝒏−𝒌 → ℝ𝒏 such that 𝒇𝜽 𝒚 , 𝒔 𝒚 ≈ 𝒛

Deep learning for decoding of linear codes-a syndrome-based approach, by A. Bennatan*, Y. Choukroun* and P Kisilev, ISIT18





How can we insert information about the code
into the model free solutions?



Error Correction Code Transformer (ECCT) Neurips22

Error Correction Code Transformer,  Y. Choukroun and L. Wolf, Neurips22



Positional Reliability Encoding

• Regular architectures (FC/RNN) lose every initial/positional information along the layers.

• The one-hot high dimensional embedding is modulated by the code invariant magnitude and syndrome values. 
⇒ Less reliable elements (i.e., low magnitude) collapse to the origin (≤ 0).

• Now the input is of dimension (𝑛 + 𝑛 − 𝑘 ) × 𝑑 = (𝟐𝒏 − 𝒌) × 𝒅



Code Aware Self-Attention

• Decoding requires the cross analysis between elements.

• We propose to insert the code via an adapted masked self-attention.

• The proposed mask can be seen as the sparse adjacency matrix of the Tanner graph extended to 
a two rings connectivity for simultaneous cross analysis. 



Noise Prediction Module

In order to predict the noise, the embeddings 
are shrunk to a one-dimensional scalar 
representation and further reduced to the code 
length.



• Our method surpasses every existing neural decoder by very large margins (even with shallow ECCT) 
and at a fraction of the complexity of the previous SOTA method.

Experiments

• 𝐸𝑏/𝑁0 ~𝑆𝑁𝑅
• Code(𝑛, 𝑘)



Analysis

• Self-attention maps:
first layers have higher self-attention 
values in the syndrome part for the 
parity-check analysis to finally focus 
on the information bits part.

• Impact of masking:
Masking improves the performance by 
orders of magnitude demonstrating 
the importance of integrating code 
information.

• Sparsity and complexity ratio:
Sparsity and self-attention complexity can 
reach up to 80% and as low as 5, 
respectively.



“But it’s not very efficient…”



Accelerating Error Correction Code Transformers

• Accelerate and improve decoding via
1. Adaptive absolute percentile ternary (0,1,-1) quantization (90% compression and >224x less energy)

2. Head partitioning self attention

3. Positional encoding of the tanner graph

Accelerating Error Correction Code Transformers, M.Levy,  Y. Choukroun and L. Wolf



Accelerating Error Correction Code Transformers
• Matches/improve over ECCT

• Close to BP’s complexity

• Increase sparsity masking

• Linear Layers are extremely sparse

Accelerating Error Correction Code Transformers, M.Levy,  Y. Choukroun and L. Wolf





Both highly and slightly corrupted codewords go through the same computationally 
demanding neural decoding procedure.

How can we develop an adaptive and iterative decoding scheme?



Denoising Diffusion Error Correction Codes ICLR23

Denoising Diffusion Error Correction Codes,  Y. Choukroun and L. Wolf, ICLR23



Channel Corruption as Diffusion

• We formulate the channel corruption process as an iterative forward diffusion process

𝑦 = 𝑥𝑡 𝑥0

𝛽𝑡 𝜀𝑡 𝛽1𝜀1𝛽2 𝜀2



Decoding as Denoising Diffusion

• As in traditional reverse diffusion process, we are interested in learning to iteratively denoise the corrupted codeword 𝒚.

𝑦 = 𝑥𝑡 𝑥0

𝛽𝑡 𝜀𝑡 𝛽1𝜀1𝛽2 𝜀2

• The original scaled setting is adapted to the ECC setting



Parity Check Conditioning and Reverse Diffusion

• The reverse denoising process of traditional DDPM is conditioned by the time step.

 Since we are not interested in generative models, we suggest conditioning the diffusion 
decoder according to the number of parity check errors which conveys information about the 
level of corruption. 

• The diffusion model is trained to predict the binary (sign of the ) multiplicative noise

• We obtain the traditional additive noise by subtracting the predicted codeword

 The  final reverse diffusion process is given by



Optimal Diffusion Step Size

• One major limitation of the generative neural diffusion process is the large number of steps required -
generally a thousand - to generate high-quality samples. 

• The number of parity check errors conveys information about the level of corruption

 Given the reverse diffusion direction/vector, we define the optimal step size as the one which 
minimizes the number of parity check errors.

• We propose to find the optimal step size λ by solving the minimum number of parity errors.

• Since the objective is highly non-differentiable and  non-convex (sign, modulo 2),
we suggest using a grid line-search approach 



• The base noise estimator is an adapted 
(“time” conditioned) ECCT

• Our approach outperforms the current SOTA results 
(obtained by ECCT) by extremely large margins on 
several families of codes of different lengths and rates, 
at a fraction of the capacity. 

• Especially for shallow models, the difference can be 
orders of magnitude.

Experiments

• 𝐸𝑏/𝑁0 ~𝑆𝑁𝑅
• Code(𝑛, 𝑘)

𝑬𝒃/𝑵𝟎



Experiments and Analysis

LS: Our line search approach 
allows convergence within 
very few iterations.





How to adapt neural decoders to Quantum error correction?



Deep Quantum Error Correction AAAI24

 Goal: allow the protection of  quantum information from quantum noise (e.g., quantum gates, decoherence).

• A quantum bit (qubit) is defined as the superposition of two states

ۧ𝝍 = 𝜶 ۧ𝟎 + 𝜷| ۧ𝟏 , 𝜶, 𝜷 ∈ ℂ, 𝜶 𝟐+ 𝜷 𝟐 = 𝟏

Deep Quantum Error Correction,  Y. Choukroun and L. Wolf, AAAI24

• There are three major differences/challenges with classical error correction

1. Syndrome Decoding: There is no arbitrary access to the current state (due to quantum wave measurement collapse) 
such that only partial information defined by the syndrome is available. 
It requires an adaptation of the existing neural decoders to syndrome decoding.

2. Logical Decoding: We are interested in the logical qubits only, meaning we wish to predict the codeword up to the logical 
operators mapping (i.e., 𝕃ො𝒛 instead of ො𝒛 ). 
However, this mapping is defined over the highly non-differentiable GF(2) (i.e., XOR).

3. Noisy Syndrome measurement: The syndrome measurement itself being noisy, the decoding must be performed based 
on multiple noisy measurements of the syndrome is obtained upon multiple noisy syndrome observations. 
Efficient decoding methods must be developed.

• These QECC challenges are at the core of our contributions.



Overcoming Measurement Collapse by Prediction

• In the QECC setting, only the code syndrome is available, since classical measurements are not allowed due to the wave function 
collapse phenomenon. Thus, it’s not possible to arbitrarily access/measure the quantum state.

• We thus propose to extend the ECCT, by replacing the magnitude of the channel output (i.e., |𝒚|) with 
an initial estimate of the noise to be further refined by the code-aware network.

• Reminiscent of MCMC methods.

• Given                                      the initial parameterized noise estimator from a given syndrome

• The initial estimator is trained to predict the noise from 
the syndrome (i.e., syndrome decoding) 



Logical Decoding

• The logical error rate (LER) metric provides valuable information on the practical decoding performance.

• We wish to minimize the following LER objective

where the multiplications are performed over the highly nondifferentiable GF(2).

• We propose to optimize the objective using a differentiable equivalence mapping 
of the XOR operator via bipolar mapping

• induces                                                such that we have

• The LER training objective becomes



Noisy Syndrome Measurement 

• In the presence of measurement errors, each syndrome measurement is repeated several times, and efficient noisy 
measurement decoding is required.

• At each time sample we have the syndrome defined as

• We first analyze each measurement separately and then perform global decoding at the embedding level by applying a 
symmetric pooling function, e.g. an average, in the middle of the neural network.

• Given a neural decoder with 𝑁 layers and the activations 𝜑 ∈ ℝ𝑇×𝑛×𝑑, the pooled embedding is given by 

𝜑 =
1

𝑇
σ𝑡𝜑𝑡 at layer 𝑙 = ⌊𝑁/2⌋

• Final Objective:   Given                                       the overall objective is

• The BER regularization is important since the GF2 optimization induces 
severe saddle point optimization.



Experiments

• Experiments are performed on the popular Toric and Surface codes.

• The performances are reported for lattice of up to length 10 (i.e., hundreds of qubits)

• Several noise settings are experimented

• Independent noise

• Depolarization noise

• Circuit noise

• With faulty syndrome measurements

• The model is based on the refined ECCT with a shallow
architecture of 6 layers with highly sparse self-attention.

• The baseline is the very popular 
Minimum Weight Perfect Matching (MWPM) algorithm
(𝑂( 𝑛3 + 𝑛2 𝑙𝑜𝑔 𝑛 ) to 𝑂(𝑛2))



Toric Code Results

Independent noise Independent noise 
with faulty syndrome measurements

Depolarization noise
Depolarization noise 

with faulty syndrome measurements



Analysis

Impact of the architecture 
and of the LER optimization

Impact of the BER regularizationImpact of the initial noise estimator





One needs to develop, train, and deploy one (neural) decoder for each family of code, length, and rate.

How can we develop a single universal neural decoder 
which is code/length/rate invariant?



A Foundation Model for Error Correction Codes ICLR24

A Foundation Model for Error Correction Codes,  Y. Choukroun and L. Wolf, ICLR24



Code-Invariant Initial Embedding

• In ECCT, a unique model is crafted for every code and length where the initial embedding is designed such that each input bit 
possesses its distinct embedding vector, providing, as a byproduct, a learned positional encoding.

• In our length-invariant model (FECCT), we propose a new code-invariant embedding, where a single embedding is given for all 
magnitude elements, and two embeddings are given for every element of the binary syndrome.

With                                         .

• This new length/rate-invariant initial encoding requires 
three embedding vectors compared to the 𝟐𝒏 − 𝒌 vectors of the ECCT.

• In contrast to ECCT which captures the bit position with learned embedding, 
our method lacks positional information.



Tanner Graph Distance Masking 
as Code and Positional encoding

• FECCT’s SA masking serves two purposes. 
• Similar to ECCT, it integrates the code structure into the transformer. 

• Adds the relative position information to the processed elements.

• The Tanner graph captures the relations between every two bits in the code (relative positional encoding). 

• We consider the distance matrix 𝓰(𝑯) ∈ ℕ 𝟐𝒏−𝒌 × 𝟐𝒏−𝒌 , induced by the code (Tanner graph).
• Each element (𝑖, 𝑗) in this matrix is defined as the length of the shortest path in the Tanner graph between node 𝑖 and node 𝑗. 

• We learn a parameterized mapping 𝝍:ℕ → ℝ of the distance matrix, incorporated into the self-attention

• This attention mechanism generalizes the ECCT which captures only up to two rings connectivity information.



Parity-Check Aware Prediction

• ECCT makes use of two fully connected layers (least length invariant modules) for the final prediction ((2𝑛 − 𝑘) → 𝑛)

• ECCT’s learned output layer is (surprisingly) greatly induced by the code/parity check matrix.

• Motivated by this phenomenon, we explicitly enforce a similar dependency structure.

• By splitting the syndrome and the channel output elements we integrate the remaining syndrome information by aggregation
according to the parity check matrix connectivity

• This way, the final prediction is code-aware but also code/length invariant.

• Finally, the FECCT being invariant, its number of parameters is independent of the code.



Experiments

• Trained on multiple codes, our single decoder (with
smaller capacity) can match and even outperform other 
methods designed and trained separately on each code, 
in multiple scenarios

• Pretrained codes

• Zero-shot codes

• Fine-tuned codes

Zero-Shot Codes

Pretrained Codes

Fine-Tuned Codes

• 𝐸𝑏/𝑁0 ~𝑆𝑁𝑅
• Code(𝑛, 𝑘)



Analysis

• Learned Distance Mapping:
FECCT seems to assign the most
impactful mapping for the elements 
distanced by one and two nodes,
remarkably matching the ECCT’s 
two-ring heuristic.

• Architectural Ablation
The ablation demonstrate the beneficial 
impact of each of the contributions on 
the obtained accuracy compared to 
SOTA

• Generalization:
To show the importance of dataset 
diversity, we show that training FECCT on 
one single code is slightly better on the 
trained code but totally lacks generalization 





How can we co-learn binary linear block codes
along with the neural decoder?



Learning Linear Block Error Correction Codes ICML24

Learning Linear Block Error Correction Codes ,  Y. Choukroun and L. Wolf, ICML24



End to End Optimization

• We assume the standard (/canonical/systematic) form of the code for differentiable and fast optimization

𝐺 = 𝐼𝑘 , 𝑃 , 𝑃 ∈ 0,1 𝑘× 𝑛−𝑘

⇒ 𝐻 = [𝑃𝑇 , 𝐼𝑛−𝑘]

• Using a general form matrix form is preferable but requires fast and differentiable computation of its inverse at each iteration.

• We want trainable parameterization of the code Ω ∈ ℝ𝑘×(𝑛−𝑘) such that, with bin(⋅) a binarization function, we have  

𝑃 = 𝑃Ω = 𝑏𝑖𝑛(Ω),.

• The end-to-end optimization objective is now defined by



Optimization over GF(2)

 Two main non-differentiable modules in the pipeline

• Binarization

• Performed via the Straight-Through-Estimator (STE)

• Dot products over GF(2)

• Performed via polar transform [1]                                                                        →

• The new form defines a multilinear polynomial (potentially inducing saddle-point optimization) 
and the gradient can now be computed in a differentiable manner.

[1] Deep Quantum Error Correction,  Y. Choukroun and L. Wolf, AAAI24



Differentiable Masking

• We suggest to extend FECCT to support end-to-end training

• Existing masking methods induced from the code are extracted once in a non-differentiable fashion,
• No information can be backpropagated during the optimization from the mask to the code

• We learn a parameterized mapping 𝜓𝛾: ℕ → ℝ of the elements constituting the mask, which is derived by the parity-check 
matrix, such that

• Represents the two-step transition matrix between every two nodes



Experiments

• Even for fixed (not trained) code the proposed neural decoder outperforms the state-of-the-art neural 
decoder. 

• The end-to-end optimization of the code improves the performance by very large margins.



Analysis

• BP on learned codes:
The learned codes outperform other 
codes under the BP decoder by very 
large margins, even if the code is 
presented in standard form. 
Our method seems to provide good 
codes in a broader sense.

• Training Dynamics
The encoder-decoder models enable 
faster and better training. 
Fast change during first stages.
The learned code is generally sparse.

• Ablation Study:
We show that the different elements of the 
architecture and training are crucial for 
performant results. 





How can we design optimal codes according to 
Belief Propagation decoders’ inductive bias?



Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding sub to Neurips24

Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding ,  Y. Choukroun and L. Wolf, sub to Neurips24
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Belief Propagation Decoding
• A factor graph is a representation of a discrete probability distribution that takes advantage of conditional independencies between 

variables to make the representation more compact

𝑝 𝑥1, … , 𝑥𝑛 =
Π𝑖=1
𝑛−𝑘𝜙𝑖 𝑥𝑆𝑖

𝑍

• Belief-Propagation (Sum-product algorithm) allows efficient marginal inference 𝑝 𝑥𝑖 via variable elimination as message-passing over 
the factor graph.

𝜈𝑋𝑖→𝜙𝑡 (𝑥𝑖) =ෑ
𝜙𝑘∈ 𝑁 𝑖 ∖{𝜙𝑡}

𝜇𝜙𝑘→𝑋𝑖(𝑥𝑖)

• For non-tree Bayesian graphs, the inference is not tractable. Thus, (loopy) belief-propagation is performed iteratively (until convergence)

• Belief-propagation decoding is generally represented as a Trellis graph unrolling of the factor/Tanner graph (log-likelihoods).

1. A

2. N

3. A

4. a

𝜇𝜙𝑡→𝑋𝑖(𝑥𝑖) =
𝑥𝑆𝑡∖{𝑖}

𝜙𝑠(𝑥𝑆𝑡)ෑ
𝑗∈𝑆𝑡∖{𝑖}

𝜈𝑋𝑗→𝜙𝑡(𝑥𝑗)

𝑃(𝑥𝑖) = 𝜙𝑖(𝑥𝑖) ς𝜙𝑘∈ 𝑁 𝑖 𝜇𝜙𝑘→𝑋𝑖
𝑻 (𝑥𝑖)



Belief Propagation Codes

• We wish to obtain BP-optimized codes by solving the following factor graph learning (structure learning) objective

• 𝒇𝑯,𝑻 is the BP decoder built upon 𝑯 with 𝑻 iterations

• 𝝓(⋅) denotes the codeword modulation

• 𝓓 is the metric of interest and 𝓡 denotes a potential regularization of interest (e.g., sparsity or code structure)

• Multiple challenges arise

1. The optimization is highly non-differentiable (NP-hard binary non-linear integer programming)

2. 𝒙 = 𝑮 𝑯 𝒎 = 𝑮𝒎 is both highly non-differentiable (matrix-vector multiplication over 𝐺𝐹(2)) 
and computationally expensive (inverse via Gaussian elimination of 𝑯)

3. The modulation 𝝓(⋅) can be non-differentiable

4. BP assumes a fixed code (i.e., the factor graph edges) upon which the decoder is implemented.



Structure Learning via Tensor Belief Backpropagation

• BP decoders are generally implemented using sparse graphs via the Trellis graph depiction.

• We propose a Tanner graph learning approach, where the bipartite graph is assumed as complete with binary weighted edges.

• The two alternating stages of BP can be represented in a differentiable matrix form rather than its static graph formulation

-

-

• represents the identity element of multiplication

• BP remains differentiable with respect to 𝑯 as a composition of differentiable functions



Belief Propagation Codes Optimization 
• The tensor reformulation solves the major graph learning challenge (challenge 4).

• For any given 𝑯 the conditional independence of error probability under symmetry [1] is satisfied for message passing algorithms

• It is enough to optimize the zero codeword only i.e., c = Gm = 0 (challenge 2)

• As a by-product, the optimization problem is invariant to the choice of modulation (challenge 3)                                                       

• To optimize 𝑯 (challenge 1) we relax the NP-hard binary programming problem to an unconstrained parameterized problem

• Defining                                       , we have

• Implemented via shifted straight-through estimator (STE)

• The final objective is given by the empirical risk objective (with 𝒄𝒔 = 𝝓(𝒄𝟎) denotes the modulated zero codeword)

• While highly non-convex, the objective is (sub)differentiable and thus optimizable via classical first-order methods

• Since 𝑯 is binary, only changes in the sign of 𝛀 are relevant for the optimization. 

• Given the gradient 𝛁𝛀𝓛 computed on sufficient statistic we propose a binary programming aware line-search procedure limiting the number of steps 
to up to 𝒏 𝒏− 𝒌 ≪ 𝟐𝒏 𝒏−𝒌

1. Highly non-differentiable optimization 

2. 𝑥 = 𝐺 𝐻 𝑚 = 𝐺𝑚

3. Non-differentiable modulation 𝜙(⋅)

4. BP assumes a fixed code

[1] Thomas J Richardson and Rüdiger L Urbanke. The capacity of low-density parity-check codes under message-passing decoding. IEEE Transactions on information theory, 2001.



Experiments

• Our method improves by large margins all code families on the three different channel noise scenarios 
and with various number of decoding iterations (L=5,15; first and second row).



Analysis
• Impact of initialization

• Initialization has a large impact the performance (local convergence)

• Learned regularization
• Regularization enforces structure and can improve performance. Sparsity constraint has low influence since it coincides with BP’s inductive bias.

• Convergence
• Optimal step sizes are close to the working point vicinity. 
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